terça-feira, 11 de dezembro de 2018


Schrödinger e a Hipótese de de Broglie no sistema decadimensional Graceli, levando a uma indeterminalidade transcendente em cadeias entre energias, fenômenos, estruturas, transições de fases de estados físicos, de estados de energias, de fenômenos,e outros, e em relação à decadimensionalidade Graceli e suas categorias.


x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D





matriz categorial Graceli.
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].



Schrödinger e a Hipótese de de Broglie. .
A famosa Equação de Schrödinger, marco inicial da Mecânica Ondulatória, tem um gênese curiosa. Quando o físico francês, o Príncipe Louis Victor Pierre Raymond de Broglie (1892-1987; PNF, 1929) apresentou nos Comptes Rendus de l´Academie des Sciences de Paris 179, p. 39, em 1924, sua interpretação ondulatória da matéria: o elétron descreve uma "onda-piloto" em sua órbita Bohriana. Tal interpretação, a princípio, causou um certo ceticismo por parte dos físicos. Ao ler esse trabalho de de Broglie (que iniciou sua carreira acadêmica como estudante de História Medieval), o físico e químico holandês Petrus Joseph Wilhelm Debye [1884-1966; Prêmio Nobel de Química (PNQ), 1936] sugeriu ao físico austríaco Erwin Schrödinger (1887-1961; PNF, 1933) que este fizesse um seminário sobre as idéias do Príncipe francês. Imediatamente Schrödinger recusou, dizendo: Eu não quero falar sobre tal "nonsense". Porém, como Debye era o chefe do grupo de pesquisa, do qual participava Schrödinger, ele enfatizou que esse seminário era importante para a formação do referido grupo. Schrödinger, então, aceitou e prometeu apresentar as idéias de de Broglie em uma forma matemática mais compreensível. E assim o fez, propondo a hoje famosa Equação de Schrödinger:
onde H é o operador Hamiltoniano (soma das energias potencial e cinética), é a energia do elétron em uma órbita atômica estacionária e é a função de onda de Schrödinger. Porém, segundo Debye contou ao físico russo Piotr Leonidovich Kapitza (1884-1984; PNF, 1978), por ocasião da apresentação do seminário de Schrödinger sobre esse assunto, este não estava muito convicto da equação que estava propondo. Foi Debye, presente a esse seminário, quem disse a Schrödinger, ao termino de sua "lecture": Você fez um trabalho extraordinário.